Silent speech interface is a promising technology that enables private communications in natural language. However, previous approaches only support a small and inflexible vocabulary, which leads to limited expressiveness. We leverage contrastive learning to learn efficient lipreading representations, enabling few-shot command customization with minimal user effort. Our model exhibits high robustness to different lighting, posture, and gesture conditions on an in-the-wild dataset. For 25-command classification, an F1-score of 0.8947 is achievable only using one shot, and its performance can be further boosted by adaptively learning from more data. This generalizability allowed us to develop a mobile silent speech interface empowered with on-device fine-tuning and visual keyword spotting. A user study demonstrated that with LipLearner, users could define their own commands with high reliability guaranteed by an online incremental learning scheme. Subjective feedback indicated that our system provides essential functionalities for customizable silent speech interactions with high usability and learnability.


翻译:静默语音界面是一种很有希望的技术,它能够使私人使用自然语言进行通信。然而,以往的方法只支持一个小型的、不灵活的词汇,这只能导致有限的表达性。我们利用对比式学习学习来学习高效的唇读式表达方式,从而能够以最小的用户努力来进行微小的指令定制。我们的模型显示,在动态数据集中,不同的照明、姿态和手势条件都非常可靠。对于25个指令分类来说,一个F1核心(0.8947)只能用一个镜头就可以实现,其性能可以通过从更多数据中适应性地学习来进一步提高。这种通用性使我们能够开发一个移动的静默语音界面,能够通过在设计性微调和视觉关键词定位上获得授权。用户研究表明,与LipLearner一起,用户可以以在线递增学习计划保证的高度可靠性来定义自己的命令。主观反馈表明,我们的系统为可定制的静语互动提供了必不可少的功能,高可用性和可学习性。

1
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员