Deep reinforcement learning has shown remarkable success in the past few years. Highly complex sequential decision making problems have been solved in tasks such as game playing and robotics. Unfortunately, the sample complexity of most deep reinforcement learning methods is high, precluding their use in some important applications. Model-based reinforcement learning creates an explicit model of the environment dynamics to reduce the need for environment samples. Current deep learning methods use high-capacity networks to solve high-dimensional problems. Unfortunately, high-capacity models typically require many samples, negating the potential benefit of lower sample complexity in model-based methods. A challenge for deep model-based methods is therefore to achieve high predictive power while maintaining low sample complexity. In recent years, many model-based methods have been introduced to address this challenge. In this paper, we survey the contemporary model-based landscape. First we discuss definitions and relations to other fields. We propose a taxonomy based on three approaches: using explicit planning on given transitions, using explicit planning on learned transitions, and end-to-end learning of both planning and transitions. We use these approaches to organize a comprehensive overview of important recent developments such as latent models. We describe methods and benchmarks, and we suggest directions for future work for each of the approaches. Among promising research directions are curriculum learning, uncertainty modeling, and use of latent models for transfer learning.


翻译:深层强化学习在过去几年中表现出了显著的成功。在游戏游戏和机器人等任务方面,已经解决了高度复杂的连续决策问题。不幸的是,最深层强化学习方法的抽样复杂性很高,无法在一些重要应用中使用。基于模型的强化学习为减少环境样品的需求创造了一个明确的环境动态模型。目前深层学习方法使用高能力网络来解决高维问题。不幸的是,高能力模型通常需要许多样本,否定了基于模型的方法中较低样本复杂性的潜在好处。因此,深层基于模型的方法面临的挑战是取得高预测力,同时保持低样本复杂性。近年来,许多基于模型的方法已被采用来应对这一挑战。在本文件中,我们调查当代基于模型的景观。首先我们讨论定义和与其他领域的关系。我们建议基于三种方法进行分类:使用对特定过渡的明确规划,利用对已学习的过渡的明确规划,以及从最后到最后的规划和过渡方法。我们使用这些方法来全面概述近期的重要发展动态,如潜在模型。我们用许多基于模型的方法方法来应对这一挑战。我们调查当代基于模型的形势。我们首先讨论定义和与其他领域的关系。我们建议了一种有前途的学习方向。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
4+阅读 · 2019年4月17日
Arxiv
53+阅读 · 2018年12月11日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
4+阅读 · 2019年4月17日
Arxiv
53+阅读 · 2018年12月11日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
25+阅读 · 2018年1月24日
Top
微信扫码咨询专知VIP会员