Computational platforms for high-performance scientific applications are becoming more heterogenous, including hardware accelerators such as multiple GPUs. Applications in a wide variety of scientific fields require an efficient and careful management of the computational resources of this type of hardware to obtain the best possible performance. However, there are currently different GPU vendors, architectures and families that can be found in heterogeneous clusters or machines. Programming with the vendor provided languages or frameworks, and optimizing for specific devices, may become cumbersome and compromise portability to other systems. To overcome this problem, several proposals for high-level heterogeneous programming have appeared, trying to reduce the development effort and increase functional and performance portability, specifically when using GPU hardware accelerators. This paper evaluates the SYCL programming model, using the Open SYCL compiler, from two different perspectives: The performance it offers when dealing with single or multiple GPU devices from the same or different vendors, and the development effort required to implement the code. We use as case of study the Finite Time Lyapunov Exponent calculation over two real-world scenarios and compare the performance and the development effort of its Open SYCL-based version against the equivalent versions that use CUDA or HIP. Based on the experimental results, we observe that the use of SYCL does not lead to a remarkable overhead in terms of the GPU kernels execution time. In general terms, the Open SYCL development effort for the host code is lower than that observed with CUDA or HIP. Moreover, the SYCL version can take advantage of both CUDA and AMD GPU devices simultaneously much easier than directly using the vendor-specific programming solutions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员