Interacting systems are ubiquitous in nature and engineering, ranging from particle dynamics in physics to functionally connected brain regions. These interacting systems can be modeled by graphs where edges correspond to the interactions between interactive entities. Revealing interaction laws is of fundamental importance but also particularly challenging due to underlying configurational complexities. The associated challenges become exacerbated for heterogeneous systems that are prevalent in reality, where multiple interaction types coexist simultaneously and relational inference is required. Here, we propose a novel probabilistic method for relational inference, which possesses two distinctive characteristics compared to existing methods. First, it infers the interaction types of different edges collectively, and second, it allows handling systems with variable topological structure over time. We evaluate the proposed methodology across several benchmark datasets and demonstrate that it outperforms existing methods in accurately inferring interaction types. We further show that when combined with known constraints, it allows us, for example, to discover physics-consistent interaction laws of particle systems. Overall the proposed model is data-efficient and generalizable to large systems when trained on smaller ones. The developed methodology constitutes a key element for understanding interacting systems and may find application in graph structure learning.
翻译:暂无翻译