Machine learning (ML) solutions are prevalent. However, many challenges exist in making these solutions business-grade. One major challenge is to ensure that the ML solution provides its expected business value. In order to do that, one has to bridge the gap between the way ML model performance is measured and the solution requirements. In previous work (Barash et al, "Bridging the gap...") we demonstrated the effectiveness of utilizing feature models in bridging this gap. Whereas ML performance metrics, such as the accuracy or F1-score of a classifier, typically measure the average ML performance, feature models shed light on explainable data slices that are too far from that average, and therefore might indicate unsatisfied requirements. For example, the overall accuracy of a bank text terms classifier may be very high, say $98\% \pm 2\%$, yet it might perform poorly for terms that include short descriptions and originate from commercial accounts. A business requirement, which may be implicit in the training data, may be to perform well regardless of the type of account and length of the description. Therefore, the under-performing data slice that includes short descriptions and commercial accounts suggests poorly-met requirements. In this paper we show the feasibility of automatically extracting feature models that result in explainable data slices over which the ML solution under-performs. Our novel technique, IBM FreaAI aka FreaAI, extracts such slices from structured ML test data or any other labeled data. We demonstrate that FreaAI can automatically produce explainable and statistically-significant data slices over seven open datasets.


翻译:机械学习(ML)解决方案非常普遍。 但是,在使这些解决方案达到商业级别方面存在着许多挑战。 一个重大挑战是确保ML解决方案能够提供预期的商业价值。 为了做到这一点,我们必须弥合衡量ML模型性能的方法与解决方案要求之间的差距。 在以往的工作中(Barash等人,“缩小差距......”),我们展示了利用特征模型来弥补这一差距的实效。ML性能指标,如分类器的准确性或F1分数,通常可以衡量平均 ML性能,特征模型可以说明可解释的数据切片离平均值太远的可解释数据切片,因此可能表明不满足的要求。例如,银行文本分解器的总体准确性可能非常高,比如98美元\ pm 2 ⁇ $ 美元,但在包括短描述和源自商业账户的术语方面可能表现不佳。在培训数据中可能隐含的任何业务要求,可以说明任何可解释的分类类型和描述的长度。 因此, 业绩不佳的数据切片中包含短期的FSerreal IM 数据,我们根据短期的缩略性模型展示了该数据。

0
下载
关闭预览

相关内容

【XAUTOML】可解释自动机器学习,27页ppt
专知会员服务
60+阅读 · 2021年4月23日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
46+阅读 · 2019年9月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
25+阅读 · 2018年11月1日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年10月6日
Arxiv
43+阅读 · 2019年12月20日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
Learning by Abstraction: The Neural State Machine
Arxiv
6+阅读 · 2019年7月11日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
25+阅读 · 2018年11月1日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Top
微信扫码咨询专知VIP会员