Machine Learning models are deployed across a wide range of industries, performing a wide range of tasks. Tracking these models and ensuring they behave appropriately is becoming increasingly difficult as the number of deployed models increases. There are also new regulatory burdens for ML systems which affect human lives, requiring a link between a model and its training data in high-risk situations. Current ML monitoring systems often provide provenance and experiment tracking as a layer on top of an ML library, allowing room for imperfect tracking and skew between the tracked object and the metadata. In this paper we introduce Tribuo, a Java ML library that integrates model training, inference, strong type-safety, runtime checking, and automatic provenance recording into a single framework. All Tribuo's models and evaluations record the full processing pipeline for input data, along with the training algorithms, hyperparameters and data transformation steps automatically. The provenance lives inside the model object and can be persisted separately using common markup formats. Tribuo implements many popular ML algorithms for classification, regression, clustering, multi-label classification and anomaly detection, along with interfaces to XGBoost, TensorFlow and ONNX Runtime. Tribuo's source code is available at https://github.com/oracle/tribuo under an Apache 2.0 license with documentation and tutorials available at https://tribuo.org.


翻译:机器学习模型分布于广泛的行业,执行各种各样的任务。随着部署模型数量的增加,跟踪这些模型并确保其行为得当正变得越来越困难。对于影响人类生活的ML系统,还有新的监管负担,需要模型与其高风险情况下的培训数据联系起来。当前的ML监测系统通常提供出处和实验跟踪,作为ML图书馆的一层,为跟踪对象和元数据之间的不完善跟踪和扭曲提供空间。在本文件中,我们引入了Tribuo,一个Java ML图书馆,将模型培训、推断、强型安全、运行时间检查和自动出处记录纳入一个单一框架。所有Tribuo的模型和评价记录了投入数据的全部处理管道,以及培训算法、超参数和数据转换步骤的自动连接。示范对象内部有源,并且可以使用通用的标记格式单独存在。Tribuoo执行许多流行的ML算法,用于分类、回归、集成、多标签分类和异常检测,同时在 XGBoost、Tentor和OnFors下与Treal-Fors的可查到的Rest/Ashimax 代码接口。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新《神经架构搜索NAS》教程,33页pdf
专知会员服务
26+阅读 · 2020年12月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
Arxiv
5+阅读 · 2018年6月5日
VIP会员
相关VIP内容
最新《神经架构搜索NAS》教程,33页pdf
专知会员服务
26+阅读 · 2020年12月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
35+阅读 · 2021年8月2日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
Arxiv
5+阅读 · 2018年6月5日
Top
微信扫码咨询专知VIP会员