The forensic attribution of the handwriting in a digitized document to multiple scribes is a challenging problem of high dimensionality. Unique handwriting styles may be dissimilar in a blend of several factors including character size, stroke width, loops, ductus, slant angles, and cursive ligatures. Previous work on labeled data with Hidden Markov models, support vector machines, and semi-supervised recurrent neural networks have provided moderate to high success. In this study, we successfully detect hand shifts in a historical manuscript through fuzzy soft clustering in combination with linear principal component analysis. This advance demonstrates the successful deployment of unsupervised methods for writer attribution of historical documents and forensic document analysis.
翻译:在数字化文档中将笔迹的法证归属于多个文士是一个具有挑战性的高维度问题。 独特的笔迹风格在包括字符大小、 中风宽度、 环形、 结构、 倾斜角度 和弯曲语等若干因素的混合体中可能不同。 先前关于隐性Markov 模型、 支持矢量机器和半监督的经常性神经网络的标签数据的工作取得了中度至高度的成功。 在这项研究中,我们成功地通过模糊的软组合和线性主构件分析,发现了历史手稿的手势变化。 这一进展表明成功运用了未经监督的写家历史文件归属和法医文件分析方法。