Variational auto-encoder (VAE) is an effective neural network architecture to disentangle a speech utterance into speaker identity and linguistic content latent embeddings, then generate an utterance for a target speaker from that of a source speaker. This is possible by concatenating the identity embedding of the target speaker and the content embedding of the source speaker uttering a desired sentence. In this work, we propose to improve VAE models with self-attention and structural regularization (RGSM). Specifically, we found a suitable location of VAE's decoder to add a self-attention layer for incorporating non-local information in generating a converted utterance and hiding the source speaker's identity. We applied relaxed group-wise splitting method (RGSM) to regularize network weights and remarkably enhance generalization performance. In experiments of zero-shot many-to-many voice conversion task on VCTK data set, with the self-attention layer and relaxed group-wise splitting method, our model achieves a gain of speaker classification accuracy on unseen speakers by 28.3\% while slightly improved conversion voice quality in terms of MOSNet scores. Our encouraging findings point to future research on integrating more variety of attention structures in VAE framework while controlling model size and overfitting for advancing zero-shot many-to-many voice conversions.


翻译:自动读取器(VAE)是一个有效的神经网络架构,将语音表达器分解成语音身份和语言内容潜伏的嵌入器,然后从源演讲者的角度为目标演讲者提供话语,这可以通过将目标演讲者的身份嵌入和源演讲者表达想要的句子的内容嵌入等同起来来实现。在这项工作中,我们提议用自我注意和结构规范(RGSM)来改进 VAE 模式。具体地说,我们找到了VAE 解调器的适当位置,以添加一个自我注意层,将非本地信息纳入生成转换的语音表达器和隐藏源演讲者的身份。我们采用了宽松的分组分裂法(RGSM)来规范网络重量和源演讲者表达器内容嵌入内容。在试验VCTK 数据集的零点多到中语音转换任务时,用自我注意层和群体分裂法宽松的方法,我们的模式在将远方发言人的分类精确度上增加了28.3-10分,同时将语音质量略地转换成未来SNet框架,同时将许多项研究结果的零位转换成升级。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
27+阅读 · 2018年4月12日
Arxiv
19+阅读 · 2018年3月28日
Arxiv
13+阅读 · 2017年12月5日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员