Learning fine-grained movements is a challenging topic in robotics, particularly in the context of robotic hands. One specific instance of this challenge is the acquisition of fingerspelling sign language in robots. In this paper, we propose an approach for learning dexterous motor imitation from video examples without additional information. To achieve this, we first build a URDF model of a robotic hand with a single actuator for each joint. We then leverage pre-trained deep vision models to extract the 3D pose of the hand from RGB videos. Next, using state-of-the-art reinforcement learning algorithms for motion imitation (namely, proximal policy optimization and soft actor-critic), we train a policy to reproduce the movement extracted from the demonstrations. We identify the optimal set of hyperparameters for imitation based on a reference motion. Finally, we demonstrate the generalizability of our approach by testing it on six different tasks, corresponding to fingerspelled letters. Our results show that our approach is able to successfully imitate these fine-grained movements without additional information, highlighting its potential for real-world applications in robotics.


翻译:暂无翻译

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年7月25日
Arxiv
0+阅读 · 2023年7月24日
Arxiv
0+阅读 · 2023年7月23日
VIP会员
Top
微信扫码咨询专知VIP会员