Accurate user interest modeling is important for news recommendation. Most existing methods for news recommendation rely on implicit feedbacks like click for inferring user interests and model training. However, click behaviors usually contain heavy noise, and cannot help infer complicated user interest such as dislike. Besides, the feed recommendation models trained solely on click behaviors cannot optimize other objectives such as user engagement. In this paper, we present a news feed recommendation method that can exploit various kinds of user feedbacks to enhance both user interest modeling and model training. We propose a unified user modeling framework to incorporate various explicit and implicit user feedbacks to infer both positive and negative user interests. In addition, we propose a strong-to-weak attention network that uses the representations of stronger feedbacks to distill positive and negative user interests from implicit weak feedbacks for accurate user interest modeling. Besides, we propose a multi-feedback model training framework to learn an engagement-aware feed recommendation model. Extensive experiments on a real-world dataset show that our approach can effectively improve the model performance in terms of both news clicks and user engagement.
翻译:准确的用户兴趣建模对于新闻建议很重要。 大部分现有的新闻建议方法都依赖于隐含的反馈, 如点击来推断用户兴趣和模式培训。 但是, 点击行为通常含有强烈的噪音, 无法帮助推断复杂的用户兴趣, 如不喜欢。 此外, 仅靠点击行为培训的反馈建议模式无法优化用户参与等其他目标。 在本文件中, 我们提出了一个新闻反馈建议方法, 它可以利用各种用户反馈来提高用户兴趣建模和模式培训。 我们提议一个统一的用户建模框架, 以纳入各种明确和隐含的用户反馈, 以推断积极的和消极的用户兴趣。 此外, 我们提议一个强到弱的注意网络, 利用更强烈的反馈表达来吸引用户的正面和负面兴趣, 以准确的用户兴趣建模。 此外, 我们提议一个多功能示范培训框架, 学习一个有吸引力的反馈建议模式。 在现实世界数据集上进行的广泛实验显示, 我们的方法可以有效地改进新闻点击和用户参与两方面的示范性表现。