We develop a theory of monotone comparative statics based on weak set order -- in short, weak monotone comparative statics -- and identify the enabling conditions in the context of individual choices, Pareto optimal choices, Nash equilibria of games, and matching theory. Compared with the existing theory based on strong set order, the conditions for weak monotone comparative statics are weaker, sometimes considerably, in terms of the structure of %the choice environments and underlying preferences of agents. We apply the theory to establish existence and monotone comparative statics of Nash equilibria in games with strategic complementarities and of stable many-to-one matchings in two-sided matching problems, allowing for general preferences that accommodate indifferences and incomplete preferences.


翻译:我们开发了单质比较静态的理论,其基础是薄弱的定序 -- -- 简言之,弱的单质比较静态 -- -- 并确定个人选择、Pareto最佳选择、Nash游戏平衡和匹配理论背景下的有利条件。 与基于强质定序的现有理论相比,弱单质比较静态的条件较弱,有时甚至相当弱,在选择环境的%结构和代理人的基本偏好方面。 我们运用该理论在具有战略互补性的游戏中建立纳什平衡的存在和单质比较静态,并在双面匹配问题上建立稳定的多对一匹配,允许满足漠视和不完全偏好的一般偏好。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【最受欢迎的概率书】《概率论:理论与实例》,490页pdf
专知会员服务
161+阅读 · 2020年11月13日
专知会员服务
28+阅读 · 2020年11月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
AI科技评论
4+阅读 · 2018年8月12日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
0+阅读 · 2021年9月30日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【最受欢迎的概率书】《概率论:理论与实例》,490页pdf
专知会员服务
161+阅读 · 2020年11月13日
专知会员服务
28+阅读 · 2020年11月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
AI科技评论
4+阅读 · 2018年8月12日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Top
微信扫码咨询专知VIP会员