The theory of learning in games has extensively studied situations where agents respond dynamically to each other by optimizing a fixed utility function. However, in many settings of interest, agent utility functions themselves vary as a result of past agent choices. The ongoing COVID-19 pandemic provides an example: a highly prevalent virus may incentivize individuals to wear masks, but extensive adoption of mask-wearing reduces virus prevalence which in turn reduces individual incentives for mask-wearing. This paper develops a general framework using probabilistic coupling methods that can be used to derive the stochastically stable states of log-linear learning in certain games which feature such game-environment feedback. As a case study, we apply this framework to a simple dynamic game-theoretic model of social precautions in an epidemic and give conditions under which maximally cautious social behavior in this model is stochastically stable.
翻译:游戏中的学习理论已经广泛研究了代理商通过优化固定的实用功能而相互动态反应的情况。 但是,在许多感兴趣的环境中,代理商的功能本身因过去的代理商选择而不同。 正在流行的COVID-19大流行提供了一个实例:一种高度流行的病毒可能激励个人戴面具,但广泛采用戴面具的病毒会减少病毒的流行,从而反过来减少个人戴面具的诱因。本文件开发了一个总框架,使用概率性混合方法,可以用来在某些游戏中得出具有游戏-环境反馈特点的逻辑-线性学习状态。作为案例研究,我们将这一框架应用于一个简单的动态游戏-理论模式,在流行病中采取社会防范措施,并创造条件,使这一模式中最为谨慎的社会行为在科学上保持稳定。