In many industrial applications like online advertising and recommendation systems, diverse and accurate user profiles can greatly help improve personalization. For building user profiles, deep learning is widely used to mine expressive tags to describe users' preferences from their historical actions. For example, tags mined from users' click-action history can represent the categories of ads that users are interested in, and they are likely to continue being clicked in the future. Traditional solutions usually introduce multiple independent Two-Tower models to mine tags from different actions, e.g., click, conversion. However, the models cannot learn complementarily and support effective training for data-sparse actions. Besides, limited by the lack of information fusion between the two towers, the model learning is insufficient to represent users' preferences on various topics well. This paper introduces a novel multi-task model called Mixture of Virtual-Kernel Experts (MVKE) to learn multiple topic-related user preferences based on different actions unitedly. In MVKE, we propose a concept of Virtual-Kernel Expert, which focuses on modeling one particular facet of the user's preference, and all of them learn coordinately. Besides, the gate-based structure used in MVKE builds an information fusion bridge between two towers, improving the model's capability much and maintaining high efficiency. We apply the model in Tencent Advertising System, where both online and offline evaluations show that our method has a significant improvement compared with the existing ones and brings about an obvious lift to actual advertising revenue.


翻译:在许多工业应用中,比如在线广告和建议系统,多样化和准确的用户概况可以极大地帮助改善个性化。对于建立用户概况,深度学习被广泛用于挖掘表达标签,以描述用户对其历史行动的偏好。例如,从用户点击-动作历史中提取的标记可以代表用户感兴趣的广告类别,而且今后还可能继续点击。传统解决方案通常会采用多种独立的双向模型,从不同行动(例如点击、转换)中为地雷标记引入多个独立的双向模型。然而,模型无法学习补充性知识,也无法支持数据偏差行动的有效培训。此外,由于两个塔之间缺乏信息融合,模型学习不足以代表用户对各种议题的偏好。例如,从用户点击-动作历史历史中提取的标记可以代表用户对不同主题的偏好。本文引入了一个叫作“虚拟核心专家(Mixture)”的新式多任务模型,可以根据不同的行动学习多个主题用户偏好。在MVKE,我们提出了虚拟-Knel专家的概念,它侧重于模型的模型中一个特定的面面面模型,可以带来对用户偏好比的升级的升级,并且所有高级的门户网站都能够学习。此外,我们所使用的高额的升级结构可以用来学习。

1
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月4日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关VIP内容
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月4日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员