Modeling tap or click sequences of users on a mobile device can improve our understandings of interaction behavior and offers opportunities for UI optimization by recommending next element the user might want to click on. We analyzed a large-scale dataset of over 20 million clicks from more than 4,000 mobile users who opted in. We then designed a deep learning model that predicts the next element that the user clicks given the user's click history, the structural information of the UI screen, and the current context such as the time of the day. We thoroughly investigated the deep model by comparing it with a set of baseline methods based on the dataset. The experiments show that our model achieves 48% and 71% accuracy (top-1 and top-3) for predicting next clicks based on a held-out dataset of test users, which significantly outperformed all the baseline methods with a large margin. We discussed a few scenarios for integrating the model in mobile interaction and how users can potentially benefit from the model.
翻译:在移动设备上模拟用户的自动或点击序列可以提高我们对互动行为的理解,并通过推荐用户可能想要点击的下一个元素为用户的UI优化提供机会。 我们分析了来自4 000多个选择的移动用户的超过2 000万点击的大型数据集。 然后我们设计了一个深层次学习模型,预测用户点击的下一个元素,以用户的点击历史、UI屏幕的结构信息以及当前环境(如当日的时间)为条件。我们通过比较基于数据集的一套基线方法,彻底调查了深层模型。实验表明,我们的模型在预测下一次点击时,实现了48%和71%的准确度(顶部-1和顶部-3),这些精确度以一个悬停的测试用户数据集为基础,大大超过所有基线方法的大差值。我们讨论了将模型纳入移动互动的几种设想,以及用户如何从模型中受益。