This paper presents a deep-learning based CPP algorithm, called Coverage Path Planning Network (CPPNet). CPPNet is built using a convolutional neural network (CNN) whose input is a graph-based representation of the occupancy grid map while its output is an edge probability heat graph, where the value of each edge is the probability of belonging to the optimal TSP tour. Finally, a greedy search is used to select the final optimized tour. CPPNet is trained and comparatively evaluated against the TSP tour. It is shown that CPPNet provides near-optimal solutions while requiring significantly less computational time, thus enabling real-time coverage path planning in partially unknown and dynamic environments.
翻译:本文介绍了基于深层学习的CPP算法,称为“覆盖路径规划网络(CPPNet)”。 CPPNet是使用一个进取神经网络(CNN)建造的,其输入是以图形表示的占用网格图,而其输出则是一个边缘概率热图,其中每个边缘的价值是属于最佳TSP巡航的概率。最后,利用贪婪的搜索来选择最后的优化巡航。CPPNet经过培训,并与TSP巡航比较评估。它表明,CPPNet提供接近最佳的解决方案,同时大大缩短计算时间,从而能够在部分未知和动态环境中进行实时覆盖路径规划。