The large data size and dimensionality of hyperspectral data demands complex processing and data analysis. Multispectral data do not suffer the same limitations, but are normally restricted to blue, green, red, red edge, and near infrared bands. This study aimed to identify the optimal set of spectral bands for nitrogen detection in grape leaves using ensemble feature selection on hyperspectral data from over 3,000 leaves from 150 Flame Seedless table grapevines. Six machine learning base rankers were included in the ensemble: random forest, LASSO, SelectKBest, ReliefF, SVM-RFE, and chaotic crow search algorithm (CCSA). The pipeline identified less than 0.45% of the bands as most informative about grape nitrogen status. The selected violet, yellow-orange, and shortwave infrared bands lie outside of the typical blue, green, red, red edge, and near infrared bands of commercial multispectral cameras, so the potential improvement in remote sensing of nitrogen in grapevines brought forth by a customized multispectral sensor centered at the selected bands is promising and worth further investigation. The proposed pipeline may also be used for application-specific multispectral sensor design in domains other than agriculture.


翻译:超光谱数据的巨大数据大小和广度要求复杂的处理和数据分析。多光谱数据不受到同样的限制,通常仅限于蓝色、绿色、红色、红色边缘和近红外带。这项研究的目的是利用150块Flame Seedlest Table葡萄藤3000多叶超光谱数据中混合特征选择的超光谱数据,确定葡萄叶中氮检测的最佳光谱带群群。6个机器学习基础级级组包含在组合中:随机森林、LASSO、SemKBest、ReliefF、SVM-RFE和混乱的乌鸦搜索算法(CCSA)中。确定在葡萄氮状态方面信息最丰富的管道不到0.45%。选定的紫色、黄色和短波红外线带位于典型的蓝色、绿色、红色和红外缘以及近红外的多光谱摄影机的红外波带之外,因此在选定的频谱带中由定制的多光谱感应感应带中生成的葡萄中,对氮的遥感进行可能的改进很有希望,值得进一步调查。拟议的管道也可用于在其它领域的应用具体的多光谱系的农业。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员