This paper presents an eXplainable Fault Detection and Diagnosis System (XFDDS) for incipient faults in PV panels. The XFDDS is a hybrid approach that combines the model-based and data-driven framework. Model-based FDD for PV panels lacks high fidelity models at low irradiance conditions for detecting incipient faults. To overcome this, a novel irradiance based three diode model (IB3DM) is proposed. It is a nine parameter model that provides higher accuracy even at low irradiance conditions, an important aspect for detecting incipient faults from noise. To exploit PV data, extreme gradient boosting (XGBoost) is used due to its ability to detecting incipient faults. Lack of explainability, feature variability for sample instances, and false alarms are challenges with data-driven FDD methods. These shortcomings are overcome by hybridization of XGBoost and IB3DM, and using eXplainable Artificial Intelligence (XAI) techniques. To combine the XGBoost and IB3DM, a fault-signature metric is proposed that helps reducing false alarms and also trigger an explanation on detecting incipient faults. To provide explainability, an eXplainable Artificial Intelligence (XAI) application is developed. It uses the local interpretable model-agnostic explanations (LIME) framework and provides explanations on classifier outputs for data instances. These explanations help field engineers/technicians for performing troubleshooting and maintenance operations. The proposed XFDDS is illustrated using experiments on different PV technologies and our results demonstrate the perceived benefits.


翻译:本文为光电池板的初始故障提供了一个可氧化的断层检测和诊断系统(XDFDS)。 XDFS是一种混合方法,将基于模型的框架和数据驱动的框架结合起来。光电池板基于模型的DFDS缺乏在低辐照条件下发现初始错误的高忠诚模型。要克服这一点,提议了一个基于三个二极模型(IB3DM)的新颖辐照性模型(IB3DM),它是一个9个参数模型,它提供更高的准确性,即使在低辐照条件下也是如此,这是探测噪音初始错误的一个重要方面。利用光电池数据,使用极端梯梯梯梯度加速(XGBOst),使用极梯梯梯梯度加速(XO)技术,它缺乏解释性,样品的特征变异异性警报是数据驱动法方法的挑战。这些缺陷可以通过XGBOost和IB3DM技术的混合化来克服,以及使用可氧化亚的易化工序智能(XAI)技术,用来将光图解和易变的解解解(eB3DMTDDM)操作法解释结果。

0
下载
关闭预览

相关内容

xgboost的全称是eXtreme Gradient Boosting,它是Gradient Boosting Machine的一个C++实现,并能够自动利用CPU的多线程进行并行,同时在算法上加以改进提高了精度。
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
126+阅读 · 2020年5月14日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
10页MIT可解释机器学习最新论文
专知
5+阅读 · 2019年2月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Arxiv
34+阅读 · 2019年11月7日
Arxiv
6+阅读 · 2018年7月9日
VIP会员
相关资讯
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
10页MIT可解释机器学习最新论文
专知
5+阅读 · 2019年2月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员