By using permutation representations of maps, one obtains a bijection between all maps whose underlying graph is isomorphic to a graph $G$ and products of permutations of given cycle types. By using statistics on cycle distributions in products of permutations, one can derive information on the set of all $2$-cell embeddings of $G$. In this paper, we study multistars -- loopless multigraphs in which there is a vertex incident with all the edges. The well known genus distribution of the two-vertex multistar, also known as a dipole, can be used to determine the expected genus of the dipole. We then use a result of Stanley to show that, in general, the expected genus of every multistar with $n$ nonleaf edges lies in an interval of length $2/(n+1)$ centered at the expected genus of an $n$-edge dipole. As an application, we show that the face distribution of the multistar is the same as the face distribution gained when adding a new vertex to a $2$-cell embedded graph, and use this to obtain a general upper bound for the expected number of faces in random embeddings of graphs.
翻译:使用地图的变换图示, 就可以在以图形为形态的图层图图为底部的图层图图和某周期类型变换产物之间取得一个双向插图。 通过使用关于变换产品中周期分布的统计资料, 就可以获得关于所有$G$的$$细胞嵌入数组的信息。 在本文中, 我们研究多星 -- -- 以所有边缘都存在顶端事件的无循环的多光谱。 众所周知的双脊外多星( 也称为dipoole) 的基因分布可以用来确定 Dipole的预期特性。 我们随后使用斯坦利的结果来显示, 一般来说, 每个有$nG$无叶边缘的多星的预期基因位于长度为 2/ (n+ 1) 的间隔, 以预期的 $n- 顶端顶端的顶端点为中心。 作为应用, 我们显示多星的面分布与在添加新的顶端图时获得的面分布相同。 我们用斯坦利的结果显示, 显示, 每个有$ 嵌嵌套图的顶部图的正数 。