Reconstructing 3D human body shapes from 3D partial textured scans remains a fundamental task for many computer vision and graphics applications -- e.g., body animation, and virtual dressing. We propose a new neural network architecture for 3D body shape and high-resolution texture completion -- BCom-Net -- that can reconstruct the full geometry from mid-level to high-level partial input scans. We decompose the overall reconstruction task into two stages - first, a joint implicit learning network (SCom-Net and TCom-Net) that takes a voxelized scan and its occupancy grid as input to reconstruct the full body shape and predict vertex textures. Second, a high-resolution texture completion network, that utilizes the predicted coarse vertex textures to inpaint the missing parts of the partial 'texture atlas'. A thorough experimental evaluation on 3DBodyTex.V2 dataset shows that our method achieves competitive results with respect to the state-of-the-art while generalizing to different types and levels of partial shapes. The proposed method has also ranked second in the track1 of SHApe Recovery from Partial textured 3D scans (SHARP [38,1]) 2022 challenge1.


翻译:从 3D 部分纹理扫描 重建 3D 人体形状 从 3D 部分纹理扫描 重建 3D 人体形状仍然是许多计算机视觉和图形应用 -- -- 例如身体动画和虚拟敷料 -- -- 的一项基本任务。我们提议为 3D 身体形状和高分辨率纹理完成 -- -- BCom-Net -- -- 建立一个新的神经网络架构,可以将全部几何从中层重建到高级部分输入扫描。我们将总体重建任务分两个阶段——首先,一个联合隐含学习网络(SCom-Net 和 TCom-Net), 将自动扫描和占用网网作为重建完整体形状和预测垂直纹理的输入。第二,一个高分辨率纹理完成网络,利用预测的神经垂直纹理纹理纹理将部分“ Textlas” 缺失的部分部分重新粉饰。我们对 3DbodyTex.V2 数据集进行彻底的实验性评估,显示我们的方法在状态上取得了竞争性的结果,同时向不同类型和部分形状的层次进行一般化。拟议的方法将SHAPR 1 II 1 AR 1 也将SHAR 1 23 1 的第二个轨道上列了SAR 1 。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年10月6日
Arxiv
0+阅读 · 2022年10月4日
Fully Sparse 3D Object Detection
Arxiv
0+阅读 · 2022年10月3日
Arxiv
0+阅读 · 2022年10月3日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员