We present LM-GAN, an HDR sky model that generates photorealistic environment maps with weathered skies. Our sky model retains the flexibility of traditional parametric models and enables the reproduction of photorealistic all-weather skies with visual diversity in cloud formations. This is achieved with flexible and intuitive user controls for parameters, including sun position, sky color, and atmospheric turbidity. Our method is trained directly from inputs fitted to real HDR skies, learning both to preserve the input's illumination and correlate it to the real reference's atmospheric components in an end-to-end manner. Our main contributions are a generative model trained on both sky appearance and scene rendering losses, as well as a novel sky-parameter fitting algorithm. We demonstrate that our fitting algorithm surpasses existing approaches in both accuracy and sky fidelity, and also provide quantitative and qualitative analyses, demonstrating LM-GAN's ability to match parametric input to photorealistic all-weather skies. The generated HDR environment maps are ready to use in 3D rendering engines and can be applied to a wide range of image-based lighting applications.
翻译:我们展示了LM-GAN, 这是一种《人类发展报告》的天空模型,该模型在天气中产生光现实的环境图。我们的天空模型保留了传统的参数模型的灵活性,能够复制光现实的全天候天空,在云层结构中具有视觉多样性。这是通过灵活和直观的用户控制参数,包括太阳位置、天空颜色和大气扰动性来实现的。我们的方法直接从安装到真实的《人类发展报告》天空的投入中进行训练,学习如何保护输入的光化,并以端至端的方式将其与实际参考的大气组成部分联系起来。我们的主要贡献是,在天空外观和场景造成损失方面受过基因化培训的模型,以及新的天空参数配置算法。我们证明,我们的配对算法在精确性和天空可靠性方面超过了现有的方法,而且还提供了定量和定性分析,表明LM-GAN能够将光现实性输入到全天候天空。生成的《人类发展报告》环境图已准备用于3D的发动机,可以应用于广泛的基于图像的照明应用。