Adversarial training (AT) in order to achieve adversarial robustness wrt single $l_p$-threat models has been discussed extensively. However, for safety-critical systems adversarial robustness should be achieved wrt all $l_p$-threat models simultaneously. In this paper we develop a simple and efficient training scheme to achieve adversarial robustness against the union of $l_p$-threat models. Our novel $l_1+l_\infty$-AT scheme is based on geometric considerations of the different $l_p$-balls and costs as much as normal adversarial training against a single $l_p$-threat model. Moreover, we show that using our $l_1+l_\infty$-AT scheme one can fine-tune with just 3 epochs any $l_p$-robust model (for $p \in \{1,2,\infty\}$) and achieve multiple norm adversarial robustness. In this way we boost the previous state-of-the-art reported for multiple-norm robustness by more than $6\%$ on CIFAR-10 and report up to our knowledge the first ImageNet models with multiple norm robustness. Moreover, we study the general transfer of adversarial robustness between different threat models and in this way boost the previous SOTA $l_1$-robustness on CIFAR-10 by almost $10\%$.


翻译:为实现对抗性强力单一美元威胁模式,已经广泛讨论了Aversarial培训(AT),以实现对抗性强力单一美元威胁模式。然而,对于安全临界系统,对抗性强力应同时实现所有美元威胁模式。在本文件中,我们制定了一个简单有效的培训计划,以实现对抗美元威胁模式联盟的对抗性强力。我们的新颖的$1+1+l ⁇ infty-AT计划是基于对不同美元Balls和成本的几何考虑,同样也是针对单一美元威胁模式的正常对抗性培训。此外,我们表明,使用我们的$_1+l ⁇ infty-AT计划可以同时实现所有美元威胁模式。我们开发一个简单有效的培训计划,以实现对抗美元威胁模式联盟的对抗性强力对抗性强力。 我们通过这种方式,我们用超过6美元美元威胁模式报告了我们先前的多诺美的多面强力风险模式。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
12+阅读 · 2020年12月10日
Weight Poisoning Attacks on Pre-trained Models
Arxiv
5+阅读 · 2020年4月14日
Arxiv
4+阅读 · 2019年11月21日
Arxiv
3+阅读 · 2019年9月5日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员