Modern machine learning models are complex and frequently encode surprising amounts of information about individual inputs. In extreme cases, complex models appear to memorize entire input examples, including seemingly irrelevant information (social security numbers from text, for example). In this paper, we aim to understand whether this sort of memorization is necessary for accurate learning. We describe natural prediction problems in which every sufficiently accurate training algorithm must encode, in the prediction model, essentially all the information about a large subset of its training examples. This remains true even when the examples are high-dimensional and have entropy much higher than the sample size, and even when most of that information is ultimately irrelevant to the task at hand. Further, our results do not depend on the training algorithm or the class of models used for learning. Our problems are simple and fairly natural variants of the next-symbol prediction and the cluster labeling tasks. These tasks can be seen as abstractions of image- and text-related prediction problems. To establish our results, we reduce from a family of one-way communication problems for which we prove new information complexity lower bounds.


翻译:现代机器学习模型复杂,而且经常汇集关于个人投入的惊人数量的信息。在极端的情况下,复杂的模型似乎将整个输入实例都记起来,包括似乎无关紧要的信息(例如文本中的社会保障数字)。在本文中,我们的目标是了解这种记忆化对于准确学习是否必要。我们描述了自然预测问题,其中每一个足够准确的培训算法都必须在预测模型中将关于它培训实例中大部分子集的所有信息编码起来。即使这些实例是高维的,其变异体比样本大小高得多,甚至大多数信息最终与手头的任务无关。此外,我们的结果并不取决于培训算法或用于学习的模型类别。我们的问题很简单,相当自然地是下一个符号预测和分组标签任务。这些任务可以被视为与图像和文本有关的预测问题的抽象。为了确定我们的结果,我们从一个单向的通信问题中减少了我们证明信息复杂性较低的范围。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
8+阅读 · 2019年1月30日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年2月15日
Arxiv
0+阅读 · 2021年2月11日
Arxiv
7+阅读 · 2020年10月9日
Arxiv
3+阅读 · 2018年8月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
8+阅读 · 2019年1月30日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员