Referring image segmentation is a fundamental vision-language task that aims to segment out an object referred to by a natural language expression from an image. One of the key challenges behind this task is leveraging the referring expression for highlighting relevant positions in the image. A paradigm for tackling this problem is to leverage a powerful vision-language ("cross-modal") decoder to fuse features independently extracted from a vision encoder and a language encoder. Recent methods have made remarkable advancements in this paradigm by exploiting Transformers as cross-modal decoders, concurrent to the Transformer's overwhelming success in many other vision-language tasks. Adopting a different approach in this work, we show that significantly better cross-modal alignments can be achieved through the early fusion of linguistic and visual features in intermediate layers of a vision Transformer encoder network. By conducting cross-modal feature fusion in the visual feature encoding stage, we can leverage the well-proven correlation modeling power of a Transformer encoder for excavating helpful multi-modal context. This way, accurate segmentation results are readily harvested with a light-weight mask predictor. Without bells and whistles, our method surpasses the previous state-of-the-art methods on RefCOCO, RefCOCO+, and G-Ref by large margins.
翻译:参考图像分割是一项基本的视觉语言任务, 目的是将自然语言表达方式与图像相提并论的物体分割开来。 这项任务的主要挑战之一是利用参考表达方式来突出图像中的相关位置。 解决这一问题的一个范例是利用强大的视觉语言(“跨模式”解码器来连接从视觉编码器和语言编码器中分离出来的功能。 最近的方法在这个模式中取得了显著的进步,利用变异器作为跨模式解码器,同时利用变异器在许多其他视觉语言任务中取得巨大成功。 在这项工作中采用不同的方法,我们表明通过在视觉变异器编码器网络的中间层早期融合语言和视觉特征,可以实现显著更好的交叉模式调整。 通过在视觉特征编码阶段进行跨模式融合,我们可以利用经充分证实的变异变器的关联模型力量来挖掘有用的多模式环境。 这样, 精确的分解结果很容易通过光量的G- CO 和旧的G- Refrate- regal 预测法和我们以前的G- Ref- Ref- regle- 方法来采集。