Female sex workers(FSWs) are one of the most vulnerable and stigmatized groups in society. As a result, they often suffer from a lack of quality access to care. Grassroot organizations engaged in improving health services are often faced with the challenge of improving the effectiveness of interventions due to complex influences. This work combines structure learning, discriminative modeling, and grass-root level expertise of designing interventions across five different Indian states to discover the influence of non-obvious factors for improving safe-sex practices in FSWs. A bootstrapped, ensemble-averaged Bayesian Network structure was learned to quantify the factors that could maximize condom usage as revealed from the model. A discriminative model was then constructed using XgBoost and random forest in order to predict condom use behavior The best model achieved 83% sensitivity, 99% specificity, and 99% area under the precision-recall curve for the prediction. Both generative and discriminative modeling approaches revealed that financial literacy training was the primary influence and predictor of condom use in FSWs. These insights have led to a currently ongoing field trial for assessing the real-world utility of this approach. Our work highlights the potential of explainable models for transparent discovery and prioritization of anti-HIV interventions in female sex workers in a resource-limited setting.


翻译:女性性工作者(FSW)是社会上最脆弱和最受鄙视的群体之一,因此,她们往往缺乏获得护理的高质量机会。参与改善保健服务的基层组织由于影响复杂,往往面临提高干预措施效力的挑战。这项工作结合了结构学习、歧视性模型和基层专门知识,在五个印度州设计干预措施,以发现非明显因素对改善FSW安全性行为的影响。一个精疲力尽的、共同和平均的Bayesian网络结构,以量化从模型中揭示的能最大限度使用避孕套的因素。然后,利用XgBoost和随机森林构建了一种歧视模式,以预测使用避孕套的行为。最佳模式在精确召回曲线下达到了83%的敏感性、99%的特性和99%的领域,以发现非明显因素对改善FSWS安全性行为的影响。两个典型和歧视性模式都表明,金融扫盲培训是FSWS使用避孕套的主要影响和预测。这些洞察力导致目前正在进行的实地试验,目的是利用XBoost和随机森林来预测使用避孕套的行为。我们的工作展示了在性别干预中评估真实世界效用的可能性。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2019年4月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年1月20日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年4月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员