Most successful search queries do not result in a click if the user can satisfy their information needs directly on the SERP. Modeling query abandonment in the absence of click-through data is challenging because search engines must rely on other behavioral signals to understand the underlying search intent. We show that mouse cursor movements make a valuable, low-cost behavioral signal that can discriminate good and bad abandonment. We model mouse movements on SERPs using recurrent neural nets and explore several data representations that do not rely on expensive hand-crafted features and do not depend on a particular SERP structure. We also experiment with data resampling and augmentation techniques that we adopt for sequential data. Our results can help search providers to gauge user satisfaction for queries without clicks and ultimately contribute to a better understanding of search engine performance.
翻译:多数成功的搜索询问不会导致点击用户能够直接满足其有关SERP的信息需求。 在没有点击数据的情况下进行模拟放弃查询具有挑战性,因为搜索引擎必须依靠其他行为信号来理解基本搜索意图。我们显示鼠标光标移动产生了一个有价值的、低成本的行为信号,可以区分优劣的放弃。我们用经常性神经网在SERP上模拟鼠移动,并探索一些不依赖昂贵的手工制作功能和不依赖特殊SERP结构的数据表示方式。我们还试验我们用于相继数据的数据再抽样和增强技术。我们的结果可以帮助搜索提供者在不点击的情况下测量用户对查询的满意度,最终有助于更好地了解搜索引擎的性能。