Most successful search queries do not result in a click if the user can satisfy their information needs directly on the SERP. Modeling query abandonment in the absence of click-through data is challenging because search engines must rely on other behavioral signals to understand the underlying search intent. We show that mouse cursor movements make a valuable, low-cost behavioral signal that can discriminate good and bad abandonment. We model mouse movements on SERPs using recurrent neural nets and explore several data representations that do not rely on expensive hand-crafted features and do not depend on a particular SERP structure. We also experiment with data resampling and augmentation techniques that we adopt for sequential data. Our results can help search providers to gauge user satisfaction for queries without clicks and ultimately contribute to a better understanding of search engine performance.


翻译:多数成功的搜索询问不会导致点击用户能够直接满足其有关SERP的信息需求。 在没有点击数据的情况下进行模拟放弃查询具有挑战性,因为搜索引擎必须依靠其他行为信号来理解基本搜索意图。我们显示鼠标光标移动产生了一个有价值的、低成本的行为信号,可以区分优劣的放弃。我们用经常性神经网在SERP上模拟鼠移动,并探索一些不依赖昂贵的手工制作功能和不依赖特殊SERP结构的数据表示方式。我们还试验我们用于相继数据的数据再抽样和增强技术。我们的结果可以帮助搜索提供者在不点击的情况下测量用户对查询的满意度,最终有助于更好地了解搜索引擎的性能。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月18日
Relational recurrent neural networks
Arxiv
8+阅读 · 2018年6月28日
Arxiv
5+阅读 · 2016年10月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员