Generative adversarial networks (GANs) are often billed as "universal distribution learners", but precisely what distributions they can represent and learn is still an open question. Heavy-tailed distributions are prevalent in many different domains such as financial risk-assessment, physics, and epidemiology. We observe that existing GAN architectures do a poor job of matching the asymptotic behavior of heavy-tailed distributions, a problem that we show stems from their construction. Additionally, when faced with the infinite moments and large distances between outlier points that are characteristic of heavy-tailed distributions, common loss functions produce unstable or near-zero gradients. We address these problems with the Pareto GAN. A Pareto GAN leverages extreme value theory and the functional properties of neural networks to learn a distribution that matches the asymptotic behavior of the marginal distributions of the features. We identify issues with standard loss functions and propose the use of alternative metric spaces that enable stable and efficient learning. Finally, we evaluate our proposed approach on a variety of heavy-tailed datasets.
翻译:产生对抗性网络(GANs)常常被记为“普遍分发学习者 ”, 但确切地说,他们能够代表的分布和学习的分布仍然是一个尚未解决的问题。 大量零售的分布在金融风险评估、物理和流行病学等许多不同领域十分普遍。 我们发现,现有的GAN结构在匹配大量销售的无症状行为方面做得很差,这是我们所显示的建筑问题。 此外,当面临大量零售的分布所特有的极小时刻和大距离时,共同损失的功能会产生不稳定或接近零梯度。 我们与Pareto GAN(Pareto GAN)一起解决这些问题。 一个Pareto GAN(Pareto GAN)利用极端价值理论和神经网络的功能特性来学习与这些特征的边际分布的无症状行为相匹配的分布。 我们找出标准损失功能的问题,并提议使用替代的计量空间,以便能够稳定和高效的学习。 最后,我们评估了我们提出的各种重层数据集的方法。