Although the log-likelihood is widely used in model selection, the log-likelihood ratio has had few applications in this area. We develop a log-likelihood ratio based method for selecting regression models by focusing on the set of models deemed plausible by the likelihood ratio test. We show that when the sample size is large and the significance level of the test is small, there is a high probability that the smallest model in the set is the true model; thus, we select this smallest model. The significance level of the test serves as a parameter for this method. We consider three levels of this parameter in a simulation study and compare this method with the Akaike Information Criterion and Bayesian Information Criterion to demonstrate its excellent accuracy and adaptability to different sample sizes. We also apply this method to select a logistic regression model for a South African heart disease dataset.
翻译:虽然在模型选择中广泛使用日志可能性比,但日志可能性比在这方面几乎没有什么应用。我们开发了一种基于日志可能性比的方法,以选择回归模型,重点是在概率比测试中认为合理的一组模型。我们显示,当样本大小大且测试意义小时,该集中最小的模型很有可能是真实模型;因此,我们选择了这个最小的模型。测试的意义水平是此方法的一个参数。我们在模拟研究中考虑了该参数的三个层次,并将这一方法与Akaike信息标准与Bayesian信息标准比较,以表明其精准性和对不同样本大小的适应性。我们还采用这种方法为南非心脏病数据集选择一个物流回归模型。