Regression discontinuity designs (RDDs) have become one of the most widely-used quasi-experimental tools for causal inference. A crucial assumption on which they rely is that the running variable cannot be manipulated -- an assumption frequently violated in practice, jeopardizing point identification. In this paper, we introduce a novel method that provide partial identification bounds on the causal parameter of interest in sharp and fuzzy RDDs. The method first estimates the number of manipulators in the sample using a log-concavity assumption on the un-manipulated density of the running variable. It then derives best- and worst-case bounds when we delete that number of points from the data, along with fast computational methods to obtain them. We apply this procedure to a dataset of blood donations from the Abu Dhabi blood bank to obtain the causal effect of donor deferral on future volunteering behavior. We find that, despite significant manipulation in the data, we are able to detect causal effects where traditional methods, such as donut-hole RDDs, fail.
翻译:递减不连续设计(RDDs)已成为最广泛使用的因果关系推断半实验工具之一。他们所依据的一个关键假设是,运行中的变量不能被操纵 -- -- 一种在实践中经常违反的假设,危及点识别。在本文中,我们引入了一种新颖的方法,对锐利和模糊的RDDs的因果关系参数提供部分识别界限。方法首先使用对运行中的变量的未调节密度的对调假设来估计样本中的操纵者数量。然后,当我们从数据中删除该点数时,它产生最佳和最坏的界限,同时采用快速计算方法来获取这些点数。我们对阿布扎比血库的血液捐赠数据集应用这一程序,以获得捐助者推迟对未来志愿行为的因果关系效应。我们发现,尽管数据受到重大操纵,但是在传统方法(如圆洞RDDDs)失败时,我们能够发现因果关系。