An automata network is a network of entities, each holding a state from a finite set and evolving according to a local update rule which depends only on its neighbors in the network's graph. It is freezing if there is an order on states such that the state evolution of any node is non-decreasing in any orbit. They are commonly used to model epidemic propagation, diffusion phenomena like bootstrap percolation or cristal growth. In this paper we establish how treewidth and maximum degree of the underlying graph are key parameters which influence the overall computational complexity of finite freezing automata networks. First, we define a general model checking formalism that captures many classical decision problems: prediction, nilpotency, predecessor, asynchronous reachability. Then, on one hand, we present an efficient parallel algorithm that solves the general model checking problem in NC for any graph with bounded degree and bounded treewidth. On the other hand, we show that these problems are hard in their respective classes when restricted to families of graph with polynomially growing treewidth. For prediction, predecessor and asynchronous reachability, we establish the hardness result with a fixed set-defiend update rule that is universally hard on any input graph of such families.
翻译:自动马塔网络是一个实体网络, 每个实体都持有一定的固定状态, 并且根据本地更新规则发展, 仅取决于网络图中的邻居。 如果有命令, 任何节点的状态演变不会在任何轨道上下降, 则会冻结。 它们通常用来模拟流行病的传播、 扩散现象, 如靴子陷阱穿孔或晶体生长。 在本文中, 我们确定底图的树枝和最大程度是如何影响有限冻结自动马塔网络的整体计算复杂性的关键参数 。 首先, 我们定义了一种一般模式来检查形式主义, 捕捉到许多典型的决定问题: 预测、 无效能力、 前身、 不同步的可达性。 然后, 一方面, 我们提出一种高效的平行算法, 解决NC 中以约束度和绑定的树枝节度来检查任何图形的总模式问题。 另一方面, 我们显示, 当限制图表的家属以多盘状树枝为单位时, 这些问题在各自的类别中是困难的。 为了预测、 之前和不固定的定式更新任何硬式的直径的直方形结果, 我们用固定的直径定的直径定的直径定的直径定的直径定的直方。