A long line of research about connectivity in the Massively Parallel Computation model has culminated in the seminal works of Andoni et al. [FOCS'18] and Behnezhad et al. [FOCS'19]. They provide a randomized algorithm for low-space MPC with conjectured to be optimal round complexity $O(\log D + \log \log_{\frac m n} n)$ and $O(m)$ space, for graphs on $n$ vertices with $m$ edges and diameter $D$. Surprisingly, a recent result of Coy and Czumaj [STOC'22] shows how to achieve the same deterministically. Unfortunately, however, their algorithm suffers from large local computation time. We present a deterministic connectivity algorithm that matches all the parameters of the randomized algorithm and, in addition, significantly reduces the local computation time to nearly linear. Our derandomization method is based on reducing the amount of randomness needed to allow for a simpler efficient search. While similar randomness reduction approaches have been used before, our result is not only strikingly simpler, but it is the first to have efficient local computation. This is why we believe it to serve as a starting point for the systematic development of computation-efficient derandomization approaches in low-memory MPC.
翻译:有关Massolious平行计算模型连接性的长期研究以Andoni等人[FOCS'18] 和Behnezhad等人[FOCS'19] 的开创性作品为安东等人[FOCS'18] 和Behnezhad等人[FOCS'19]的作品达到高潮。它们为低空间的MPC提供了随机化算法,其预测值为最佳圆形复杂度$O(log D+\log\log\log\crac m n} n)和$O(m) 空间,以美元为顶端和直径为美元。令人惊讶的是,Coy和Czumaj [STOC'22]最近的一项结果显示了如何实现同样的确定性。但不幸的是,它们的算法有较大的本地计算时间。我们提出了一个确定性连接性算法,与随机算法的所有参数相匹配,而且大大将本地计算时间大大缩短到接近线。我们的脱地计算法基于降低随机性以进行更简单的搜索所需的数量。我们最初曾使用过类似的随机性降低性的方法,但现在也认为这是系统计算的结果。 我们的计算方法是简单的。