The identification and classification of transitions in topological and microstructural regimes in pattern-forming processes are critical for understanding and fabricating microstructurally precise novel materials in many application domains. Unfortunately, relevant microstructure transitions may depend on process parameters in subtle and complex ways that are not captured by the classic theory of phase transition. While supervised machine learning methods may be useful for identifying transition regimes, they need labels which require prior knowledge of order parameters or relevant structures describing these transitions. Motivated by the universality principle for dynamical systems, we instead use a self-supervised approach to solve the inverse problem of predicting process parameters from observed microstructures using neural networks. This approach does not require predefined, labeled data about the different classes of microstructural patterns or about the target task of predicting microstructure transitions. We show that the difficulty of performing the inverse-problem prediction task is related to the goal of discovering microstructure regimes, because qualitative changes in microstructural patterns correspond to changes in uncertainty predictions for our self-supervised problem. We demonstrate the value of our approach by automatically discovering transitions in microstructural regimes in two distinct pattern-forming processes: the spinodal decomposition of a two-phase mixture and the formation of concentration modulations of binary alloys during physical vapor deposition of thin films. This approach opens a promising path forward for discovering and understanding unseen or hard-to-discern transition regimes, and ultimately for controlling complex pattern-forming processes.
翻译:模式形成过程中的表层和微观结构体系转型的识别和分类对于理解和构建许多应用领域的微结构精密新材料至关重要。 不幸的是,相关的微观结构转型可能取决于过程参数的微妙和复杂,而传统的阶段过渡理论并没有抓住这些参数。 虽然监督的机器学习方法可能有益于确定过渡制度,但它们需要标签,需要事先了解描述这些过渡的秩序参数或相关结构。受动态系统普遍性原则的驱动,我们采用自我监督的方法来解决通过神经网络观测到的微观结构预测过程参数的反面问题。这一方法并不需要预先界定、贴标签的关于微结构模式不同类别或预测微观结构转型的目标任务的数据。我们表明,执行反序预测任务的困难与发现微观结构体系的目标有关,因为复杂结构模式的质量变化与我们自我控制的问题在不确定性预测中的变化相对应。我们通过自动发现不同类别结构结构的快速结构模式,或者通过在两种模式形成中自动发现不同的微结构结构结构的变现,从而显示我们的方法的价值。