Many flagship smartphone cameras now use a dedicated neural image signal processor (ISP) to render noisy raw sensor images to the final processed output. Training nightmode ISP networks relies on large-scale datasets of image pairs with: (1) a noisy raw image captured with a short exposure and a high ISO gain; and (2) a ground truth low-noise raw image captured with a long exposure and low ISO that has been rendered through the ISP. Capturing such image pairs is tedious and time-consuming, requiring careful setup to ensure alignment between the image pairs. In addition, ground truth images are often prone to motion blur due to the long exposure. To address this problem, we propose a method that synthesizes nighttime images from daytime images. Daytime images are easy to capture, exhibit low-noise (even on smartphone cameras) and rarely suffer from motion blur. We outline a processing framework to convert daytime raw images to have the appearance of realistic nighttime raw images with different levels of noise. Our procedure allows us to easily produce aligned noisy and clean nighttime image pairs. We show the effectiveness of our synthesis framework by training neural ISPs for nightmode rendering. Furthermore, we demonstrate that using our synthetic nighttime images together with small amounts of real data (e.g., 5% to 10%) yields performance almost on par with training exclusively on real nighttime images. Our dataset and code are available at https://github.com/SamsungLabs/day-to-night.
翻译:许多旗舰智能手机相机现在使用专门的神经图像信号处理器(ISP)来将噪声原始传感器图像变为最终处理的产出。培训夜模 ISP网络依赖于大型图像配对数据集。 培训夜模 ISP 网络依赖于大型图像数据集, 包括:(1) 以短期曝光和高ISO增益捕获的噪音原始图像;(2) 长期曝光和通过ISP生成的低ISO的地面真知灼见低噪音原始图像; 安装这些图像配对是乏味和耗时的, 需要仔细设置以确保图像配对之间的匹配。 此外, 由于长期曝光, 地面真实图像往往会变得模糊。 为解决这一问题, 我们提议一种方法, 将白天图像合成的夜间图像合成成像合成。 白天图像很容易被捕捉, 显示低噪音( 即使在智能手机相机上), 很少受到运动模糊的影响。 我们的处理框架是将白天原始图像转换成现实的夜间原始图像和不同程度的噪音。 我们的程序允许我们很容易制作调和清洁的夜间图像。 我们展示了我们的合成框架的有效性, 使用合成模型显示我们的实时图像。