Artificial Intelligence (AI), and in particular, the explainability thereof, has gained phenomenal attention over the last few years. Whilst we usually do not question the decision-making process of these systems in situations where only the outcome is of interest, we do however pay close attention when these systems are applied in areas where the decisions directly influence the lives of humans. It is especially noisy and uncertain observations close to the decision boundary which results in predictions which cannot necessarily be explained that may foster mistrust among end-users. This drew attention to AI methods for which the outcomes can be explained. Bayesian networks are probabilistic graphical models that can be used as a tool to manage uncertainty. The probabilistic framework of a Bayesian network allows for explainability in the model, reasoning and evidence. The use of these methods is mostly ad hoc and not as well organised as explainability methods in the wider AI research field. As such, we introduce a taxonomy of explainability in Bayesian networks. We extend the existing categorisation of explainability in the model, reasoning or evidence to include explanation of decisions. The explanations obtained from the explainability methods are illustrated by means of a simple medical diagnostic scenario. The taxonomy introduced in this paper has the potential not only to encourage end-users to efficiently communicate outcomes obtained, but also support their understanding of how and, more importantly, why certain predictions were made.


翻译:人工智能(AI),特别是其解释性,在过去几年里引起了人们的极大关注。虽然我们通常不怀疑这些系统在只有结果才有意义的情况下的决策过程,但是当这些系统在决定直接影响到人类生活的领域应用时,我们确实密切注意这些系统。在决策边界附近特别吵闹和不确定的观察结果,这些预测必然不会引起最终用户之间的不信任。这使人们注意到可以解释其结果的大赦国际方法。贝叶斯网络是概率性的图形模型,可以用作管理不确定性的工具。贝叶斯网络的概率框架允许在模型、推理和证据中解释这些系统。这些方法的使用大多是临时性的,而不是在更广泛的人工智能研究领域组织起来的解释性方法。因此,我们引入了一种解释性分类方法,在贝叶斯网络中可能无法解释其解释性。我们把现有解释性、推理或证据的分类范围扩大到包括解释性决定的解释性。从贝叶斯网络中获得的解释性模型、解释性框架允许在模型、推理和证据中解释性框架在模型、推理理理和证据中可以解释性解释性解释性方面进行解释性解释性解释性解释性解释性分析。重要的是,这些解释性分析的结果是简单的方法,其最终结果被解释性解释性解释性解释性分析的结果也被解释为解释性解释性解释性,也被解释性解释性解释性分析为解释性的方法,也被解释性文件所解释性文件所解释性分析为解释性,也被解释性分析为解释性文件所解释性,它。在分析性分析性分析性分析性分析性的方法。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
7+阅读 · 2018年1月31日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员