Computational Fluid Dynamics (CFD) simulations are a very important tool for many industrial applications, such as aerodynamic optimization of engineering designs like cars shapes, airplanes parts etc. The output of such simulations, in particular the calculated flow fields, are usually very complex and hard to interpret for realistic three-dimensional real-world applications, especially if time-dependent simulations are investigated. Automated data analysis methods are warranted but a non-trivial obstacle is given by the very large dimensionality of the data. A flow field typically consists of six measurement values for each point of the computational grid in 3D space and time (velocity vector values, turbulent kinetic energy, pressure and viscosity). In this paper we address the task of extracting meaningful results in an automated manner from such high dimensional data sets. We propose deep learning methods which are capable of processing such data and which can be trained to solve relevant tasks on simulation data, i.e. predicting drag and lift forces applied on an airfoil. We also propose an adaptation of the classical hand crafted features known from computer vision to address the same problem and compare a large variety of descriptors and detectors. Finally, we compile a large dataset of 2D simulations of the flow field around airfoils which contains 16000 flow fields with which we tested and compared approaches. Our results show that the deep learning-based methods, as well as hand crafted feature based approaches, are well-capable to accurately describe the content of the CFD simulation output on the proposed dataset.


翻译:自动数据分析方法对于许多工业应用来说,例如汽车形状、飞机部件等工程设计的空气动力优化等,是一个非常重要的工具。这种模拟的输出,特别是计算出流场,通常非常复杂,很难解释现实的三维现实世界应用,特别是如果根据时间进行模拟调查,自动数据分析方法是必要的,但数据的巨大维度提供了非三角障碍。一个流动场通常包括3D空间和时间计算网点每个点的6个计量值(速度矢量值、扰动能量、压力和粘度)。在本文件中,我们处理的是从高维数据集中自动提取有意义的结果的任务,我们建议了能够处理这些数据的深层次学习方法,可以用来解决模拟数据的相关任务,即预测基于空气纤维的拖力和升力。我们还提议对计算机精度和时间的计算网格每个点(速度矢量值、扰动能量、压力和粘固度等)的典型手动特征进行六个测量值测量值值值值(速度),以自动方式从高维度数据集中提取有意义的结果。我们提出了深层次的模拟了16平流数据,我们用模拟实地数据,以模拟方式对16平流数据进行数据进行数据进行模拟,我们进行模拟,以显示大平流数据进行。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Arxiv
32+阅读 · 2021年3月8日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员