We consider the problem of computing routing schemes in the $\mathsf{HYBRID}$ model of distributed computing where nodes have access to two fundamentally different communication modes. In this problem nodes have to compute small labels and routing tables that allow for efficient routing of messages in the local network, which typically offers the majority of the throughput. Recent work has shown that using the $\mathsf{HYBRID}$ model admits a significant speed-up compared to what would be possible if either communication mode were used in isolation. Nonetheless, if general graphs are used as the input graph the computation of routing schemes still takes polynomial rounds in the $\mathsf{HYBRID}$ model. We bypass this lower bound by restricting the local graph to unit-disc-graphs and solve the problem deterministically with running time $O(|\mathcal H|^2 \!+\! \log n)$, label size $O(\log n)$, and size of routing tables $O(|\mathcal H|^2 \!\cdot\! \log n)$ where $|\mathcal H|$ is the number of ``radio holes'' in the network. Our work builds on recent work by Coy et al., who obtain this result in the much simpler setting where the input graph has no radio holes. We develop new techniques to achieve this, including a decomposition of the local graph into path-convex regions, where each region contains a shortest path for any pair of nodes in it.


翻译:我们考虑在 $\ mathsf{ Hybreid} 分布式计算模型中计算路由方案的问题, 因为节点可以使用两种截然不同的通信模式。 在此问题上, 问题节点必须计算小标签和路由表, 以便本地网络中的信息高效路由, 通常提供大部分输送量。 最近的工作显示, 使用 $\ mathsf{ Hybriid} 模式可以大大加快速度 。 与 如果在孤立状态中使用更简化的平面计算 。 然而, 如果使用普通图表作为输入图, 则 路由普通图表计算仍然使用 $\ mathfsf{ Hybrid} 模式中的多盘路段。 我们绕过此小路段, 将本地图限制为单位分解图, 并用运行时间 $( mathcal H<unk> 2\\\\\\\\\\\\\\\\\\\\\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ lax lax lax lax lax \ \ \ \ \ \ \ \ lax lax \ \ lax \ lax lax \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ lax \ \ \ \ \ \ lax \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ la \ \ \ \ \ \ la \ \ la la la la</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月4日
Arxiv
0+阅读 · 2023年5月4日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员