Graph Neural Networks (GNNs) that are based on the message passing (MP) paradigm generally exchange information between 1-hop neighbors to build node representations at each layer. In principle, such networks are not able to capture long-range interactions (LRI) that may be desired or necessary for learning a given task on graphs. Recently, there has been an increasing interest in development of Transformer-based methods for graphs that can consider full node connectivity beyond the original sparse structure, thus enabling the modeling of LRI. However, MP-GNNs that simply rely on 1-hop message passing often fare better in several existing graph benchmarks when combined with positional feature representations, among other innovations, hence limiting the perceived utility and ranking of Transformer-like architectures. Here, we present the Long Range Graph Benchmark (LRGB) with 5 graph learning datasets: PascalVOC-SP, COCO-SP, PCQM-Contact, Peptides-func and Peptides-struct that arguably require LRI reasoning to achieve strong performance in a given task. We benchmark both baseline GNNs and Graph Transformer networks to verify that the models which capture long-range dependencies perform significantly better on these tasks. Therefore, these datasets are suitable for benchmarking and exploration of MP-GNNs and Graph Transformer architectures that are intended to capture LRI.
翻译:以信息传递(MP)范式为基础,基于信息传递(MP)模式的内建网络(GNNs)通常在1点邻居之间交流信息,以便在每一层建立节点表示方式。原则上,这些网络无法捕捉到在图表上学习某项任务所需的或必要的长距离互动(LRI)。最近,人们越来越关注开发基于变异器的图表方法,这些图可以考虑超出原始稀疏结构的完全节点连接,从而能够建立LRI的模型。然而,只要依靠1点消息传递到几个现有图表基准中,通常会更好一些现有图表基准中,同时加上位置特征显示方式等创新,从而限制变异型结构的预期效用和等级。在这里,我们介绍长距离图基准(LRGB),配有5个图表学习数据集:PascalVOC-SP、CO-SP、PCQM-Contact、Pepided-func和Pepides-struct, 可以说需要LRI的推理算方法才能在既定任务中实现强的绩效。我们把GNNNPNS-G-G-GERs作为基准基准基准基准基准基准基准基准基准,这些模型作为基准,这些模型和模型作为基准,这些模型作为基准,这些模型作为基准,这些模型的基础,这些模型是这些模型的可靠基础,这些模型用于这些模型的模型的模型的模型和模型的模型的模型,用来核查。