Camera trapping is increasingly used to monitor wildlife, but this technology typically requires extensive data annotation. Recently, deep learning has significantly advanced automatic wildlife recognition. However, current methods are hampered by a dependence on large static data sets when wildlife data is intrinsically dynamic and involves long-tailed distributions. These two drawbacks can be overcome through a hybrid combination of machine learning and humans in the loop. Our proposed iterative human and automated identification approach is capable of learning from wildlife imagery data with a long-tailed distribution. Additionally, it includes self-updating learning that facilitates capturing the community dynamics of rapidly changing natural systems. Extensive experiments show that our approach can achieve a ~90% accuracy employing only ~20% of the human annotations of existing approaches. Our synergistic collaboration of humans and machines transforms deep learning from a relatively inefficient post-annotation tool to a collaborative on-going annotation tool that vastly relieves the burden of human annotation and enables efficient and constant model updates.
翻译:相机捕捉越来越多地被用于监测野生生物,但这一技术通常需要大量的数据说明。最近,深层学习极大地推动了野生生物的自动识别。然而,当野生生物数据本质上是动态的,而且涉及长尾的分布时,目前的方法因依赖大型静态数据集而受阻。这两个缺陷可以通过机器学习和循环中人类的混合组合来克服。我们提议的迭代人类和自动识别方法能够从长尾分布的野生生物图像数据中学习。此外,它包括自我更新学习,有助于捕捉迅速变化的自然系统的社区动态。广泛的实验表明,我们的方法可以达到~90%的精确度,仅使用现有方法人类说明的~20%。我们人类和机器的协同合作将深度学习从一个效率相对低的笔记后工具转变为一个协作式的笔记工具,可以大大减轻人类笔记的负担,并能够有效和不断地更新模型。