The portrayal of negative emotions such as anger can vary widely between cultures and contexts, depending on the acceptability of expressing full-blown emotions rather than suppression to maintain harmony. The majority of emotional datasets collect data under the broad label ``anger", but social signals can range from annoyed, contemptuous, angry, furious, hateful, and more. In this work, we curated the first in-the-wild multicultural video dataset of emotions, and deeply explored anger-related emotional expressions by asking culture-fluent annotators to label the videos with 6 labels and 13 emojis in a multi-label framework. We provide a baseline multi-label classifier on our dataset, and show how emojis can be effectively used as a language-agnostic tool for annotation.
翻译:愤怒等负面情绪的描述在不同文化和背景之间可能有很大差异,这取决于能否接受表达完整的情绪而不是压制以保持和谐。 大部分情感数据集在“愤怒”的大标签下收集数据,但社会信号可以包括愤怒、轻蔑、愤怒、愤怒、憎恶等等。 在这项工作中,我们整理了第一个充满了各种情绪的多元文化视频数据集,并深入探索了与愤怒有关的情感表达方式,要求文化流畅的广告师在多标签框架内将视频标有6个标签和13个模版。 我们为我们的数据集提供了一个基线的多标签分类分类器,并展示了如何有效地将情感分类用作语言认知的批注工具。