This work studies the multi-task functional linear regression models where both the covariates and the unknown regression coefficients (called slope functions) are curves. For slope function estimation, we employ penalized splines to balance bias, variance, and computational complexity. The power of multi-task learning is brought in by imposing additional structures over the slope functions. We propose a general model with double regularization over the spline coefficient matrix: i) a matrix manifold constraint, and ii) a composite penalty as a summation of quadratic terms. Many multi-task learning approaches can be treated as special cases of this proposed model, such as a reduced-rank model and a graph Laplacian regularized model. We show the composite penalty induces a specific norm, which helps to quantify the manifold curvature and determine the corresponding proper subset in the manifold tangent space. The complexity of tangent space subset is then bridged to the complexity of geodesic neighbor via generic chaining. A unified convergence upper bound is obtained and specifically applied to the reduced-rank model and the graph Laplacian regularized model. The phase transition behaviors for the estimators are examined as we vary the configurations of model parameters.
翻译:这项工作研究多任务函数线性回归模型, 共变数和未知回归系数( 所谓的斜度函数) 两者都是曲线。 对于斜度函数估计, 我们使用受罚的样条来平衡偏差、 差异和计算复杂度。 多任务学习的力量通过在斜度函数上设置额外结构而引入。 我们提出一个通用模型, 对浮度系数矩阵进行双重正规化 : (一) 矩阵多重制约, 和 (二) 组合惩罚, 以之作为二次曲线术语的组合。 许多多任务学习方法可以作为这一拟议模型的特殊案例处理, 如降级模型和拉广场图常规化模型。 我们展示了一种特定的参数, 这有助于量化多曲线, 并确定多相向相向空间的相应组合。 然后通过通用链化, 将焦距空间子组合的复杂度与地球德相邻的复杂度联系起来。 获得统一的趋同上限, 具体适用于降级模型和图形 Laplacecian 常规模型。 我们检查了配置的阶段过渡模型, 。