For highly distributed environments such as edge computing, collaborative learning approaches eschew the dependence on a global, shared model, in favor of models tailored for each location. Creating tailored models for individual learning contexts reduces the amount of data transfer, while collaboration among peers provides acceptable model performance. Collaboration assumes, however, the availability of knowledge transfer mechanisms, which are not trivial for deep learning models where knowledge isn't easily attributed to precise model slices. We present Canoe - a framework that facilitates knowledge transfer for neural networks. Canoe provides new system support for dynamically extracting significant parameters from a helper node's neural network and uses this with a multi-model boosting-based approach to improve the predictive performance of the target node. The evaluation of Canoe with different PyTorch and TensorFlow neural network models demonstrates that the knowledge transfer mechanism improves the model's adaptiveness to changes up to 3.5X compared to learning in isolation, while affording several magnitudes reduction in data movement costs compared to federated learning.


翻译:对于高度分布的环境,如边缘计算,合作学习方法避免依赖全球共享模型,而倾向于为每个地点量身定制的模式。为个人学习环境建立量身定制的模式会减少数据传输量,而同龄人之间的协作则提供可接受的模型性业绩。然而,合作假设了知识转让机制的可用性,而对于知识不易被精确模型切片所归结的深层次学习模式来说,这种机制并非微不足道。我们提出了“独木舟”——一个便利神经网络知识转让的框架。独木舟为动态地从帮助节点神经网络提取重要参数提供了新的系统支持,并用多模型推进法使用这一模式来改进目标节点的预测性能。不同PyTorrch和TensorFlow神经网络模型对Canoe的评估表明,知识转让机制提高了模型适应性,使其与孤立学习相比,可调整到3.5X,同时与联邦化学习相比,数据移动成本可以降低若干倍。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
87+阅读 · 2019年10月21日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
0+阅读 · 2021年10月7日
Privacy-Preserving News Recommendation Model Learning
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员