Efficient vision works maximize accuracy under a latency budget. These works evaluate accuracy offline, one image at a time. However, real-time vision applications like autonomous driving operate in streaming settings, where ground truth changes between inference start and finish. This results in a significant accuracy drop. Therefore, a recent work proposed to maximize accuracy in streaming settings on average. In this paper, we propose to maximize streaming accuracy for every environment context. We posit that scenario difficulty influences the initial (offline) accuracy difference, while obstacle displacement in the scene affects the subsequent accuracy degradation. Our method, Octopus, uses these scenario properties to select configurations that maximize streaming accuracy at test time. Our method improves tracking performance (S-MOTA) by 7.4% over the conventional static approach. Further, performance improvement using our method comes in addition to, and not instead of, advances in offline accuracy.
翻译:高效的愿景在潜流预算下可以实现最大化准确性。 这些工程可以对离线准确性进行实时评估, 一个图像一次。 但是, 实时的愿景应用, 比如在流流环境中自动驾驶操作, 从而在开始和结束之间发生地面真实性的变化。 这导致显著的精确性下降 。 因此, 最近提出的一项旨在平均使流流设置的准确性最大化的工作 。 在本文中, 我们提议为每个环境环境环境环境环境设定最大程度流出准确性。 我们认为, 假设情景的难度会影响初始( 离线) 准确性差, 同时会影响随后的精确性差 。 我们的方法, Octopus, 使用这些假设性能来选择在测试时间将流精度最大化的配置。 我们的方法比常规静态方法提高了7.4%的跟踪性能( S-MOTA ) 。 此外, 使用我们的方法改进了离线准确性能, 而不是取代了离线性能的提高 。