Reservoir Computing (RC) is a simple and efficient model-free framework for forecasting the behavior of nonlinear dynamical systems from data. Here, we show that there exist commonly-studied systems for which leading RC frameworks struggle to learn the dynamics unless key information about the underlying system is already known. We focus on the important problem of basin prediction -- determining which attractor a system will converge to from its initial conditions. First, we show that the predictions of standard RC models (echo state networks) depend critically on warm-up time, requiring a warm-up trajectory containing almost the entire transient in order to identify the correct attractor even after being trained with optimal hyperparameters. Accordingly, we turn to Next-Generation Reservoir Computing (NGRC), an attractive variant of RC that requires negligible warm-up time. By incorporating the exact nonlinearities in the original equations, we show that NGRC can accurately reconstruct intricate and high-dimensional basins of attraction, even with sparse training data (e.g., a single transient trajectory). Yet, a tiny uncertainty on the exact nonlinearity can already break NGRC, rendering the prediction accuracy no better than chance. Our results highlight the challenges faced by data-driven methods in learning the dynamics of multistable systems and suggest potential avenues to make these approaches more robust.


翻译:Reservoir Computing (RC)是一种简洁高效的无模型框架,在给定数据后可预测非线性动态系统的行为。在这里,作者证明了存在一些常见的非线性系统,即使是关键信息已知,也难以通过当前流行的RC框架进行学习。作者的研究重点是流域预测,即确定系统从初始状态收敛到哪个吸引子。首先,作者表明标准RC模型(如回声状态网络)的预测结果会严重依赖于热启动时间,而要求的热启动轨迹几乎必须包括整个转移过程,才能在使用最佳超参数进行训练后识别正确的吸引子。因此,作者通过引入下一代Reservoir Computing(NGRC)来研究流域预测问题,NGRC的热启动时间非常短。通过将原方程中的确切非线性结构纳入到模型中,作者表明NGRC可以准确地重构复杂高维的吸引子流域,即使仅有少量的训练数据(如一条短暂轨迹)。然而,即使是微小的不确定性,也有可能破坏NGRC的表现,使得预测精度不如随机猜测。作者的研究强调了数据驱动方法在学习多稳定系统动力学时面临的挑战,并提供了使这些方法更加鲁棒的潜在途径。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月8日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员