Given an approximate eigenvector, its (standard) Rayleigh quotient and harmonic Rayleigh quotient are two well-known approximations of the corresponding eigenvalue. We propose a new type of Rayleigh quotient, the homogeneous Rayleigh quotient, and analyze its sensitivity with respect to perturbations in the eigenvector. Furthermore, we study the inverse of this homogeneous Rayleigh quotient as stepsize for the gradient method for unconstrained optimization. The notion and basic properties are also extended to the generalized eigenvalue problem.
翻译:以其( 标准) Rayleigh 商数和 yoronic Rayleigh 商数为近似值。 我们提出一种新的Rayleigh 商数,即同质的Rayleigh 商数,并分析其对振动源扰动的敏感度。 此外,我们研究了这种同质的Rayleigh 商数的反面,作为不限制优化的梯度方法的阶梯化。 概念和基本特性也扩展到了普遍的皮质值问题。</s>