We consider the problem of dividing limited resources to individuals arriving over $T$ rounds. Each round has a random number of individuals arrive, and individuals can be characterized by their type (i.e. preferences over the different resources). A standard notion of `fairness' in this setting is that an allocation simultaneously satisfy envy-freeness and efficiency. The former is an individual guarantee, requiring that each agent prefers her own allocation over the allocation of any other; in contrast, efficiency is a global property, requiring that the allocations clear the available resources. For divisible resources, when the number of individuals of each type are known upfront, the above desiderata are simultaneously achievable for a large class of utility functions. However, in an online setting when the number of individuals of each type are only revealed round by round, no policy can guarantee these desiderata simultaneously, and hence the best one can do is to try and allocate so as to approximately satisfy the two properties. We show that in the online setting, the two desired properties (envy-freeness and efficiency) are in direct contention, in that any algorithm achieving additive envy-freeness up to a factor of $L_T$ necessarily suffers an efficiency loss of at least $1 / L_T$. We complement this uncertainty principle with a simple algorithm, HopeGuardrail, which allocates resources based on an adaptive threshold policy. We show that our algorithm is able to achieve any fairness-efficiency point on this frontier, and moreover, in simulation results, provides allocations close to the optimal fair solution in hindsight. This motivates its use in practical applications, as the algorithm is able to adapt to any desired fairness efficiency trade-off.


翻译:我们认为,将有限的资源分给抵达超过美元回合的个人的问题。每回合都有随机数量的个人抵达,个人可以以其类型(即对不同资源的偏好)为特征。在这一背景下,“公平”的标准概念是,分配同时满足不妒忌和提高效率。前者是个人保障,要求每个代理商更愿意自己分配,而不是任何其他代理商的分配;相反,效率是一种全球财产,要求分配能够清除可用资源。对于可变资源而言,当每类个人的数量在前头已知时,上述偏差可以同时达到其类型的类型(即对不同资源的偏好 ) 。但是,在网上设置中,当每类个人的数量只是一轮地显示的“公平”标准时,没有任何政策能够同时保证这些偏差,因此,最佳的保证是每个代理商选择和分配,从而大致满足这两个属性。 我们显示,在网上设置中,两种理想的属性(高度自由和效率)是可以直接争论的,在任何算法中,在最接近的节率点上达到最接近的“不合理”的“公平”值值,在1美元-T原则上,这必然会带来效率的损失。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2021年7月1日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【反馈循环自编码器】FEEDBACK RECURRENT AUTOENCODER
专知会员服务
22+阅读 · 2020年1月28日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Arxiv
0+阅读 · 2021年7月1日
Arxiv
0+阅读 · 2021年7月1日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Top
微信扫码咨询专知VIP会员