We introduce a simple and fast method for comparing graphs of different sizes. Existing approaches are often either limited to comparing graphs with the same number of vertices or are computationally unscalable. We propose the Embedded Laplacian Distance (ELD) for comparing graphs of potentially vastly different sizes. Our approach first projects the graphs onto a common, low-dimensional Laplacian embedding space that respects graphical structure. This reduces the problem to that of comparing point clouds in a Euclidean space. A distance can then be computed efficiently via a natural sliced Wasserstein approach. We show that the ELD is a pseudo-metric and is invariant under graph isomorphism. We provide intuitive interpretations of the ELD using tools from spectral graph theory. We test the efficacy of the ELD approach extensively on both simulated and real data. Results obtained are excellent.
翻译:我们采用简单快捷的方法来比较不同大小的图表。 现有的方法往往局限于比较与相同数量脊椎的图表,或者无法计算。 我们建议用嵌入式拉帕拉西亚距离(ELD)来比较可能大不相同的大小的图表。 我们的方法首先将图形投射到一个尊重图形结构的通用低维拉帕西安嵌入空间上。 这样可以将问题降低到比较欧克莱底空间的点云的问题。 然后可以通过自然切片瓦西里斯坦法有效计算距离。 我们显示ELD是一种假数,在图形形态下是无变的。 我们用光谱图理论的工具对ELD进行直觉解释。 我们用模拟和真实数据广泛测试ELD方法的功效。 所获得的结果非常好 。