A set $X \subseteq V(G)$ in a graph $G$ is $(q,k)$-unbreakable if every separation $(A,B)$ of order at most $k$ in $G$ satisfies $|A \cap X| \leq q$ or $|B \cap X| \leq q$. In this paper, we prove the following result: If a graph $G$ excludes a fixed complete graph $K_h$ as a minor and satisfies certain unbreakability guarantees, then $G$ is almost rigid in the following sense: the vertices of $G$ can be partitioned in an isomorphism-invariant way into a part inducing a graph of bounded treewidth and a part that admits a small isomorphism-invariant family of labelings. This result is the key ingredient in the fixed-parameter algorithm for Graph Isomorphism parameterized by the Hadwiger number of the graph, which is presented in a companion paper.
翻译:在一张G$的图中, 一套美元=x = subseteq V(G) $(q,k) $是不可打破的, 如果每个分离的美元(A,B) 以美元计, 最多以美元计, 美元满足 $A\ cap X ⁇ \\ leq q 美元, 或 $B\ cap X ⁇ \\\ leq q q 美元 。 在本文中, 我们证明以下结果: 如果一个G$(G) 将固定的完整图形 $K_h美元作为次要的和满足某些不可打破的保证排除在外, 那么$G 几乎在以下意义上是僵硬的: $G 的顶点可以以异变式- 方式分割成一个部分, 诱导出一条条框框框的树丝图, 和一个部分接纳一个小的无形态- 变量的标签组。 其结果是, 这是由图中的Hadwiger 数字 所显示的图形的固定参数算的关键成分 。