We consolidate two widely believed conjectures about tautologies -- no optimal proof system exists, and most require superpolynomial size proofs in any system -- into a $p$-isomorphism-invariant condition satisfied by all paddable $\textbf{coNP}$-complete languages or none. The condition is: for any Turing machine (TM) $M$ accepting the language, $\textbf{P}$-uniform input families requiring superpolynomial time by $M$ exist (equivalent to the first conjecture) and appear with positive upper density in an enumeration of input families (implies the second). In that case, no such language is easy on average (in $\textbf{AvgP}$) for a distribution applying non-negligible weight to the hard families. The hardness of proving tautologies and theorems is likely related. Motivated by the fact that arithmetic sentences encoding "string $x$ is Kolmogorov random" are true but unprovable with positive density in a finitely axiomatized theory $\mathcal{T}$ (Calude and J{\"u}rgensen), we conjecture that any propositional proof system requires superpolynomial size proofs for a dense set of $\textbf{P}$-uniform families of tautologies encoding "there is no $\mathcal{T}$ proof of size $\leq t$ showing that string $x$ is Kolmogorov random". This implies the above condition. The conjecture suggests that there is no optimal proof system because undecidable theories help prove tautologies and do so more efficiently as axioms are added, and that constructing hard tautologies seems difficult because it is impossible to construct Kolmogorov random strings. Similar conjectures that computational blind spots are manifestations of noncomputability would resolve other open problems.


翻译:我们整合了两种广泛相信的关于调制语言的推测 -- -- 没有最佳证明系统, 多数需要任何系统中的超球体大小证明 -- -- 以所有可加压的$\textbf{coNP} $- 完整的语言满足的价格或无。 条件是: 对于任何接受该语言的图灵机器(TM) $M$, 需要超球体时间的美元=( 相当于第一个测算) 。 大多数都需要任何系统中的超球体大小证明 -- -- 在任何系统中, 超球体大小证明 -- -- 超球体积值证明( 缩数) -- -- 在输入组的查点中( 缩数) 以美元表示超球体大小。 在这样的情况下,这种语言在平均情况下( 美元\ textbf{AvgP} 完全满足了对硬体重量的分布。 证明 tautbormologies的难度很可能是相关的。 令你难以理解的是,因为算句子的编码“ $xormorovs is so non.

0
下载
关闭预览

相关内容

专知会员服务
38+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月5日
Arxiv
0+阅读 · 2022年7月3日
Arxiv
0+阅读 · 2022年7月1日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
专知会员服务
38+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员