A hybrid framework combining the branch and bound method with multiobjective evolutionary algorithms is proposed for nonconvex multiobjective optimization. The hybridization exploits the complementary character of the two optimization strategies. A multiobjective evolutionary algorithm is intended for inducing tight lower and upper bounds during the branch and bound procedure. Tight bounds such as the ones derived in this way can reduce the number of subproblems that have to be solved. The branch and bound method guarantees the global convergence of the framework and improves the search capability of the multiobjective evolutionary algorithm. An implementation of the hybrid framework considering NSGA-II and MOEA/D-DE as multiobjective evolutionary algorithms is presented. Numerical experiments verify the hybrid algorithms benefit from synergy of the branch and bound method and multiobjective evolutionary algorithms.
翻译:将分支和约束方法与多目标进化算法相结合的混合框架建议用于非convex多目标优化。混合化利用了两种优化战略的互补性质。多目标进化算法旨在为分支和约束程序带来紧凑的下限和上界。以这种方式得出的界限可以减少必须解决的子问题的数量。分支和约束方法保证了框架的全球趋同,并提高了多目标进化算法的搜索能力。执行混合框架时,将NSGA-II和MOEA/D-DE视为多目标进化算法。数字实验核实混合算法受益于分支和约束方法和多目标进化算法的协同作用。