The estimation of continuous parameters from measured data plays a central role in many fields of physics. A key tool in understanding and improving such estimation processes is the concept of Fisher information, which quantifies how information about unknown parameters propagates through a physical system and determines the ultimate limits of precision. With Artificial Neural Networks (ANNs) gradually becoming an integral part of many measurement systems, it is essential to understand how they process and transmit parameter-relevant information internally. Here, we present a method to monitor the flow of Fisher information through an ANN performing a parameter estimation task, tracking it from the input to the output layer. We show that optimal estimation performance corresponds to the maximal transmission of Fisher information, and that training beyond this point results in information loss due to overfitting. This provides a model-free stopping criterion for network training-eliminating the need for a separate validation dataset. To demonstrate the practical relevance of our approach, we apply it to a network trained on data from an imaging experiment, highlighting its effectiveness in a realistic physical setting.
翻译:从测量数据中估计连续参数在物理学的许多领域中起着核心作用。理解和改进此类估计过程的关键工具是费希尔信息的概念,它量化了关于未知参数的信息如何通过物理系统传播,并决定了精度的最终极限。随着人工神经网络(ANNs)逐渐成为许多测量系统不可或缺的一部分,理解它们如何在内部处理和传递与参数相关的信息变得至关重要。在此,我们提出了一种方法来监控执行参数估计任务的ANN中的费希尔信息流,从输入层追踪到输出层。我们证明了最优估计性能对应于费希尔信息的最大传输,而超过此点的训练会因过拟合导致信息损失。这为网络训练提供了一个无模型的停止准则——无需单独的验证数据集。为了证明我们方法的实际相关性,我们将其应用于在成像实验数据上训练的网络,突显了其在现实物理环境中的有效性。