We establish a deterministic and stochastic spherical quasi-interpolation framework featuring scaled zonal kernels derived from radial basis functions on the ambient Euclidean space. The method incorporates both quasi-Monte Carlo and Monte Carlo quadrature rules to construct easily computable quasi-interpolants, which provide efficient approximation to Sobolev-space functions for both clean and noisy data. To enhance the approximation power and robustness of our quasi-interpolants, we develop a multilevel method in which quasi-interpolants constructed with graded resolutions join force to reduce the error of approximation. In addition, we derive probabilistic concentration inequalities for our quasi-interpolants in pertinent stochastic settings. The construction of our quasi-interpolants does not require solving any linear system of equations. Numerical experiments show that our quasi-interpolation algorithm is more stable and robust against noise than comparable ones in the literature.
翻译:我们建立了一个确定性与随机性相结合的球面拟插值框架,其核心是采用源自环境欧几里得空间径向基函数的缩放带核。该方法结合了拟蒙特卡洛与蒙特卡洛积分规则,以构建易于计算的拟插值算子,从而为洁净及含噪数据提供对Sobolev空间函数的高效逼近。为提升拟插值算子的逼近能力与鲁棒性,我们发展了一种多层级方法,其中通过分级分辨率构建的拟插值算子协同作用以降低逼近误差。此外,我们在相关的随机设定中推导了拟插值算子的概率集中不等式。我们所构建的拟插值算子无需求解任何线性方程组。数值实验表明,与文献中的同类方法相比,我们的拟插值算法在面对噪声时具有更高的稳定性与鲁棒性。